H11 has dose-dependent and dual hypertrophic and proapoptotic functions in cardiac myocytes.
نویسندگان
چکیده
We have shown previously that H11, a serine/threonine kinase, is up-regulated in a heart subjected to ischaemia/reperfusion. In the present study, we have characterized the cellular function of H11, using neonatal rat cardiac myocytes. Although transduction of adenovirus harbouring H11 at low doses increased the cell size, at higher doses it induced apoptosis in cardiac myocytes. Apoptosis was not observed when adenovirus harbouring H11-KI (kinase-inactive mutant of H11) was used, suggesting that the proapoptotic effect of H11 is kinase-dependent. The hypertrophic effect of H11 at high doses was unmasked when apoptosis was inhibited by the caspase inhibitor DEVD-CHO, suggesting that H11 stimulates both hypertrophy and apoptosis in parallel. H11-KI induced hypertrophy even at high doses, indicating that H11 stimulates hypertrophy through kinase-independent mechanisms. H11-KI activated Akt, and cardiac hypertrophy induced by H11-KI was blocked by LY294002, an inhibitor of phosphoinositide 3-kinase. Co-immunoprecipitation analyses indicated that H11 interacts with the alpha subunit of CK2 (casein kinase 2). Overexpression of H11 decreased the kinase activity of CK2. DRB (5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole), an inhibitor of CK2, mimicked the effect of H11, whereas DRB and H11 failed to exhibit additive effects on apoptosis, suggesting that H11 and DRB utilize a common mechanism to induce apoptosis, namely inhibition of CK2. In summary, H11 is a dual-function kinase in cardiac cells: it induces hypertrophy at low doses through kinase-independent activation of Akt, whereas it causes apoptosis at high doses through protein kinase-dependent mechanisms, in particular by physical interaction with and subsequent inhibition of CK2.
منابع مشابه
H11 kinase is a novel mediator of myocardial hypertrophy in vivo.
By subtractive hybridization, we found a significant increase in H11 kinase transcript in large mammalian models of both ischemia/reperfusion (stunning) and chronic pressure overload with hypertrophy. Because this gene has not been characterized in the heart, the goal of the present study was to determine the function of H11 kinase in cardiac tissue, both in vitro and in vivo. In isolated neona...
متن کاملHypertrophy In Vivo
By subtractive hybridization, we found a significant increase in H11 kinase transcript in large mammalian models of both ischemia/reperfusion (stunning) and chronic pressure overload with hypertrophy. Because this gene has not been characterized in the heart, the goal of the present study was to determine the function of H11 kinase in cardiac tissue, both in vitro and in vivo. In isolated neona...
متن کاملProteasome activation during cardiac hypertrophy by the chaperone H11 Kinase/Hsp22.
AIMS The regulation of protein degradation by the proteasome during cardiac hypertrophy remains largely unknown. Also, the proteasome translocates to the nuclear periphery in response to cellular stress in yeast, which remains unexplored in mammals. The purpose of this study was to determine the quantitative and qualitative adaptation of the proteasome during stable cardiac hypertrophy. METHO...
متن کاملApical Hypertrophic Cardiomyopathy in a Case with Chest Pain and Family History of Sudden Cardiac Death: A Case Report
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disease, which is caused by a multitude of mutations in genes encoding proteins of the cardiac sarcomere (1). Apical hypertrophic cardiomyopathy (AHCM) is an uncommon type of HCM. The sudden cardiac death is less likely to occur in the patients inflicted with AHCM (2). Herein, we presented the case of a 29-year-old man ...
متن کاملBuckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway
Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 388 Pt 2 شماره
صفحات -
تاریخ انتشار 2005